Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules.
نویسندگان
چکیده
Spent culture supernatants from both Aeromonas hydrophila and Aeromonas salmonicida activate a range of biosensors responsive to N-acylhomoserine lactones (AHLs). The genes for a quorum sensing signal generator and a response regulator were cloned from each Aeromonas species and termed ahyRI and asaRI, respectively. Protein sequence homology analysis places the gene products within the growing family of LuxRI homologs. ahyR and asaR are transcribed divergently from ahyI and asaI, respectively, and in both Aeromonas species, the genes downstream have been identified by DNA sequence and PCR analysis. Downstream of both ahyI and asaI is a gene with close homology to iciA, an inhibitor of chromosome replication in Escherichia coli, a finding which implies that in Aeromonas, cell division may be linked to quorum sensing. The major signal molecule synthesized via both AhyI and AsaI was purified from spent culture supernatants and identified as N-(butanoyl)-L-homoserine lactone (BHL) by thin-layer chromatography, high-pressure liquid chromatography analysis, and mass spectrometry. In addition, a second, minor AHL, N-hexanoyl-L-homoserine lactone, was identified. Transcriptional reporter studies with ahyI::luxCDABE fusions indicate that AhyR and BHL are both required for ahyI transcription. For A. salmonicida, although the addition of exogenous BHL gives only a small stimulation of the production of serine protease with comparison to the control culture, the incorporation of a longer-chain AHL, N-(3-oxodecanoyl)-L-homoserine lactone, reduced the final level (by approximately 50%) and delayed the appearance (from an A650 of 0.9 in the control to an A650 of 1.2 in the test) of protease in the culture supernatant. These data add A. hydrophila and A. salmonicida to the growing family of gram-negative bacteria now known to control gene expression through quorum sensing.
منابع مشابه
N-Acyl Homoserine Lactone-Mediated Quorum Sensing in Aeromonas veronii biovar sobria Strain 159: Identification of LuxRI Homologs
Aeromonas veronii biovar sobria Strain 159: Identification of LuxRI Homologs.
متن کاملQuorum sensing-dependent regulation and blockade of exoprotease production in Aeromonas hydrophila.
In Aeromonas hydrophila, the ahyI gene encodes a protein responsible for the synthesis of the quorum sensing signal N-butanoyl-L-homoserine lactone (C4-HSL). Inactivation of the ahyI gene on the A. hydrophila chromosome abolishes C4-HSL production. The exoprotease activity of A. hydrophila consists of both serine protease and metalloprotease activities; in the ahyI-negative strain, both are sub...
متن کاملWhole-Genome Sequencing Analysis of Quorum-Sensing Aeromonas hydrophila Strain M023 from Freshwater
Aeromonas hydrophila is a well-known waterborne pathogen that recently was found to infect humans. Here, we report the draft genome of a freshwater isolate from a Malaysian waterfall, A. hydrophila strain M023, which portrays N-acylhomoserine lactone-dependent quorum sensing.
متن کاملGenome Sequence Analysis Reveals Evidence of Quorum-Sensing Genes Present in Aeromonas hydrophila Strain M062, Isolated from Freshwater
Aeromonas hydrophila has emerged worldwide as a human pathogen. Here, we report the draft whole-genome sequence of a freshwater isolate from Malaysia, A. hydrophila strain M062, and its N-acylhomoserine lactone genes are also reported here.
متن کاملA Variant Quorum Sensing System in Aeromonas veronii MTCC 3249
We have investigated the quorum sensing control in Aeromonas veronii MTCC 3249, originally isolated as A. culicicola from the midgut of Culex quinquefasciatus. Based on biosensor assays, the bacterium showed constant production of multiple acyl-homoserine lactones (AHLs) with increasing cell-density. The luxRI gene homologs, acuR (A. culicicola transcriptional Regulator) and acuI (A. culicicola...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 179 17 شماره
صفحات -
تاریخ انتشار 1997